US009110577B1

a2z United States Patent (10) Patent No.: US 9,110,577 B1
Alur et al. 45) Date of Patent: Aug. 18, 2015
(54) METHOD AND SYSTEM FOR CAPTURING, (56) References Cited
INFERRING, AND/OR NAVIGATING
DEPENDENCIES BETWEEN MASHUPS AND U.S. PATENT DOCUMENTS
THEIR DATA SOURCES AND CONSUMERS 4,914,586 A * 4/1990 Swinehartetal. 1/1
6,119,135 A 9/2000 Helfman
(75) Inventors: Deepak Alur, Fremont, CA (US); 6,674,447 Bl 1/2004 Chiang et al.
Rajmohan Krishnamurthy, Walnut 6,684,207 B1 1/2004 Greenfield et al.
Creek, CA ([JS)’ Uday Nandigam 6,760,306 B1* 7/2004 Panetal.cccoo.... 370/230
: . 7,149,982 B1 12/2006 Duperrouzel et al.
Gajendar, Menlo Park, CA (US); 7,536,413 Bl 52000 Mohan et al.
Kishore Subramanian, Sunnyvale, CA 7788251 B2 82010 Carlson et al.
(Us) 7,831,559 Bl 11/2010 Mohan et al.
7,904,818 B2 3/2011 Lauridsen et al.
(73) Assignee: Software AG USA Inc., Reston, VA 8,321,792 B1 11/2012 Alur et al.
(US) 8,397,056 Bl 3/2013 Malks et al.
8,458,596 B1* 6/2013 Malksetal. 715/742
(*) Notice: Subject. to any disclaimer,. the term of this %88%8?%2?% ﬁ} i?gggé z\rﬁr{; :tt aaf'
patent is extended or adjusted under 35 2003/0117437 Al 6/2003 Cook et al.
U.S.C. 154(b) by 644 days. 2003/0197726 Al 10/2003 Weitzman
2004/0183831 Al 9/2004 Ritchy et al.
(21) Appl. No.: 12/890,224 (Continued)
(22) Filed: Sep.24,2010 OTHER PUBLICATIONS

Office Action issued by the U.S. Patent Office on Dec. 22, 2011 in
connection with related U.S. Appl. No. 12/763,798.

Related U.S. Application Data .
(Continued)

(60) Provisional application No. 61/247,155, filed on Sep.

30, 2009. Primary Examiner — Amy Ng
(51) Int.CL Assistant Examiner — Toan Vu
GO6F 3/01 (2006.01) (74) Attorney, Agent, or Firm — Posz Law Group, PLC
GOG6F 3/0485 (2013.01)
GOGF 3/0482 (2013.01) 7 ABSTRACT
GOG6F 3/00 (2006.01) A computer system, includes a display interface; a user input
GO6F 3/0481 (2013.01) device interface; and a processor cooperatively operable with
(52) U.S.CL the display interface and the user input device interface. The
CPC oo GOGF 3/0485 (2013.01); GOGF 3/0482 processor is configured to interacting with a user to selec-

tively browse, via the user input device interface and the
display interface, relationship dependencies between a
selected mashup or service and mashup assets one level

(2013.01); GO6F 3/0481 (2013.01)
(58) Field of Classification Search

USPC ..ccccevvene 715/830, 841, 772, 738, 734, 736; removed from the selected mashup or service.
717/106, 109
See application file for complete search history. 14 Claims, 7 Drawing Sheets

301
303 305 / 307
~ ~ ~

Used By Focus Uses
325
323 : 317 311
321 — Mashup 1 313
Application 1 /
315
s Mastuo 2)Y

319 Mashlet 2 Mashup 2

US 9,110,577 B1

Page 2
(56) References Cited 2010/0082989 Al 4/2010 Bussard et al.
2010/0180254 Al* 7/2010 Petschniggetal. 717/105
U.S. PATENT DOCUMENTS 2010/0180330 Al* 7/2010 Zhuetal.ccocovrvvrvnnnnen. 726/10
2010/0269149 Al 10/2010 Leeetal.
2004/0207659 Al* 10/2004 Goodman et al. 345/762 2010/0325557 Al* 12/2010 Sibillocccoovviiinn 715/751
2004/0221296 Al 11/2004 Ogielski et al. 2011/0041069 Al* 2/2011 Carletti 715/738
2005/0166180 Al* 7/2005 Lemonetal. 717/106 2011/0191786 Al* 82011 Maetal .oooivvvvrrnnninnn. 719/320
2005/0278323 Al 12/2005 Horvitz et al.
2007/0028162 Al* 2/2007 Griffinetal. 715/513 OTHER PUBLICATIONS
%88;;8??;;22 ﬁ} gggg; ég;sn:teétﬂél Office Action mailed by the U.S. Patent Office on Dec. 30, 2011 in
2007/0130541 Al 6/2007 Louch et al. ' connection with related U.S. Appl. No. 12,763,724.
2007/0162850 Al 7/2007 Adler et al. Office Action issued by the U.S. Patent Office on Jan. 9, 2012 in
2007/0162936 Al* 7/2007 Stallings etal. 725/58 connection with related U.S. Appl. No. 12/763,517.
2007/0240063 Al 10/2007 Cheng et al. U.S. Appl. No. 13/759,632, filed Feb. 5, 2013, Malks et al.
2007/0282673 Al* 12/2007 Nagpaletal. 705/11 Magazinius et al., “A Lattice-based Approach to Mashup Security”,
2008/0016232 Al 1/2008 Yared et al. Apr. 2012, pp. 15-23.
%882;82?‘5‘2%‘5‘ ﬁ} Sgggg kouc_h _it alt' o Final Office Action issued by the U.S. Patent Office on Dec. 18, 2012
2008/0222599 AL* 9/2008 Ni&lz&l;iﬂ : 717/107 in connection with related U.S. Appl. No. 12/763,517.
T Notice of Allowance issued by the U.S. Patent Office on Dec. 26,
2008/0270929 Al* 10/2008 Bohnetal.c.oennn. T15/772) . .
2009/0172545 Al* 7/2009 Yokoi 715/721 2012 in connection with related U.S. Appl. No. 12/763,582.
5009/0205029 ALl* 82009 Noda et al. 72606 Notice of Allowance issued by the U.S. Patent Office on Mar. 6, 2013
2009/0259631 Al* 10/2009 Farrell et al. o.ooeveeveen.n. 707/3 in connection with related U.S. Appl. No. 12/763,517.
2009/0265362 Al 10/2009 Parsons et al. Office Action issued by the U.S. Patent Office on Jun. 8, 2012 in
2009/0313601 A1* 12/2009 Bairdetal. 717/106 connection with related U.S. Appl. No. 12/763,582.
2009/0328137 Al* 12/2009 Liangetal.ccooovrnnnnn 726/1 Office Action issued by the U.S. Patent Office on Aug. 8, 2012 in
2009/0328205 Al 12/2009 Ims et al. connection with related U.S. Appl. No. 12/763,517.
2010/0034258 Al* 2/2010 Panditetal. ... 375/240.08 Notice of Allowance issued by the U.S. Patent Office on Aug. 8,2012
2010/0036814 Al* 2/2010 Kalasapuretal. 707/3 in connection with related U.S. Appl. No. 12/763,798.
2010/0042973 Al 2/2010 Anderson et al.
2010/0070925 Al* 3/2010 Einaudietal. 715/830 * cited by examiner

U.S. Patent Aug. 18,2015 Sheet1of7 US 9,110,577 B1
USES
USES USES
105 101 USES 103
o N v v v
MASHLET /
APPLICATION
A A A
USED BY
USED BY USED BY

USED BY

U.S. Patent

Aug. 18, 2015

Sheet 2 of 7

w20 FIG. 2

,203
\J
= Haon
JackBe
Browse /MyStuff Mashboard ~ Gallery History

Tolonk
B Created by John Smith

Provider Amazon Services xxooo

& YouTubeVigwer MegaService123 Sai u parsiciats nde ominis steratus Comments (7)

Add

error sit voluptatem accusantium
doloremaque laudantium, totam rem
aperium, eaque insa quag b ilo inventore
veritatls ef quasi architecto beatae vitae
dicta sunt explicabo. Sed ut perspiciatis

ETags. 00, bar, tag1, tag2, tag3

>

unde ontnis iste natus error sit
voluptatem accusantium doloremque
[3udantium, totam rem aperium, eaque
insa quas ab illo inventore vertatis

¢t quast architecto beatag vitae

dicta sunt explicabo.

G

m Lorem ipsum dolar sit armet, consectetur adipsicing elit, sed de eiusmod

Lorem ipsum dolar sit armet, consectetur adipsicing elit, sed de eiusmad
tempaor incididunt ut labore et dolors magna aligua.

by jimsmithee_278 posted on6i2312007 at 8:45 pm

Flag as inappropriat

-

terrnar incididunt ut lahare ot dalars maana aisa

\d
Run Data Preview [CJrters v | [octeviews v
Time |Delay | Change [identity [Outcome [Message Valug Last [Symbol
InputFied |:| S0P Jomet [-08 [Hease [Success [Delayimes are 1% s for NASDAQ NYSE ad ANEK Sews |39 [
L00PY 0 -4£3 Success Jolzy tirres are 15 s for NASDAQ, NYSE a-d AMEX Suzeiss 95 faal
40P [0 207 Sucness Jelzy i es are 15 s for NASDAQ, NYSE a-d AMEX Suseess [
InputHeId I:l Time Dslay Change [Identity |Outcome [Message ___ ‘ Valug Lahs1 Symbol
L00PYJoniEr 043 Hease' [Suctess | Delayties arz 15 mivs for NASDAQ, NYSE a-d AMEX Suseess 30 e
400PY o -4€3 Sucoess | Jelay times are 15 mins for NASDAQ, NYSE a-d AMEX Suzesss o fal
|ﬂpUtF\9|d : 40P 0 207 Suceess | Jeaytires are 15 mi-s for NASDAQ NYSE a-d AMEX Susesss 1565 Jufe
Time |Delay | Change [identity [Outcome | Hessage Value Last [Symbol
L£02PMJ007E12T | -043 Heace- [Success | Jelzytmres are 15 mi-s for NASDAQ, NYSE a-d AMEX Syzeiss 36 e
L00PM 0 -4£3 Suecess | delzytimes are 15 mins for NASDAQ, NYSE a~d AMEX Suzess 95 feal
400PY 0 -7 Sucoess | Jelay times are 19 mins for NASDAQ, NYSE a-d AMEX Suzesss 1266 ufe
Time |Delay | Change [identity [Outcome |Hessage Valug Last [Symbol
|ﬂpUIF\9|d | | 402PM Jodrerdt |-043 JHeace |Success | Jelzyiimes are !5 nis for NASDAQ NYSEa-d AMEX Suceiss 3% e
400PM -4£3 Success | Jelzytresare 15 mis for NASDAQ NYSE a-d AMEX Suzeiss 95 feal
400PY =207 Sucoess | Jelay imes are 19 mi-s for NASDAQ, NYSE a-d AMEK Sucesss 156 ufe
‘ | | Time elay [Change [Tdenfity [Qutcome |Message Value Tast_[Symbd
|ﬂpUtF\9|d 402PY 0ie [-043 Heace [Suceess Jelzyres are 15 mis for NASDAQ NYSE a-d AMEX Suscess 38 e
400PY - Suceess | Jeaytimes are 19 mi-s for NASDAQ NYSE a~d AMEX Sucess U5 el
Time tlay Hessage Valug Last [Symbol
|npu[He|d I:l 40ppy foosetdt | Dy ar 6 s for AEDAD,NiSE a4 AWEX Sowss |56 o
400P¥ |0 Jelzy s are 15 s for NASDAQ NYSE a-d AMEX Suscess 945: Jeal
L00PY |0 Sucsess | ey times ara 15 mivs for NASDAQ, NYSE ad AMEX Suess 1568 |ufe
Send alink [[JLink o page ¥ | Ceebiastel || TheaSwpshat |
¥ Advanced

| Relationships | Access Conirols| Cache Setings

Item xix> Item yyy > ltem zzz 205 207 209 Rese!
[[[
Consumed by FOCUS Consumes
Mashlet zzz — Mashup xyz123 —» Service 123

—» Serviceabe
—> Saviceryz
—» Mashup 769

US 9,110,577 B1

U.S. Patent Aug. 18, 2015 Sheet 3 of 7 US 9,110,577 B1

FIG. 3
301
303 305 / 307
~ ~
Used By Focus Uses

2
320 A Mashlet 1 Service 1

317 311
Widget 1 / Service 2 d
321 (' Mashup 1

Application 1
319 /

Mashlet 2

323

Service 3

L

iy
i

Mashup 2 -

FIG. 4
401
403 405 / 407
~ ~ ~
Used By Focus Uses

425 409

Mashlet 1 Service 1

417
423 411
) Widget 1 \ / Service 2 -
421 (" Mashup 1 413

Service 3 -

Application 1 /.
415
YA Mashiet 2 ~(Mashup2)~V

i

iy

Vi

U.S. Patent Aug. 18, 2015 Sheet 4 of 7 US 9,110,577 B1

FIG. 5
501
503 505 / 507
~ ~ ~
Used By Focus Uses
*2 Mashup 1

519

513 509
— ~3(Mashup 2 . 511
Application 2 /. /

Widget 2

517

Z

515

i

Z

FIG. 6
601
603 605 / 607
~ ~ ~
Used By Focus Uses

621

!

Mashup 1

613
619 609
~(Mashlet 3 h\ - Service 4 -
617 — ~3(Mashup 2 . 611
Application 2 /. Service 5 -

Widget 2

Z

£

i

615

U.S. Patent Aug. 18, 2015 Sheet 5 of 7 US 9,110,577 B1

701
703 705 / 707
~ ~ ~
Used By Focus Uses
709
Mashup 2 d
717 . 11
C__ Y NCommiees)y
) Application 1 Mashlet 3 713
= (Aeplication 1) e)
715
- Csevee 7)Y

U.S. Patent Aug. 18, 2015 Sheet 6 of 7 US 9,110,577 B1

FIG. 8

807 801 \‘

MASHUP
SERVER \\ 805 COMPUTERSYSTEM 859 851
AA DISP.
803 PROCESSOR | F rExumggIOR
DISPLAY
855 A—y 853
WEB MEMORY 809[INP. | USER
SERVICE | F | INPUT
OP. SYS, DATA, VARIABLES 811 DEVICE
849
PROVIDE DISPLAY OF A MASHUP 813
GET LIST OF MASHUPS AND/OR SERVICES USED | | g15
BY AMASHUP (FIRST LEVEL OR RECURSIVELY)
GET LIST OF MASHUPS AND/OR SERVICES USED | | 815
861 BY AMASHLET COMPONENT (FIRST LEVEL OR
| RECURSIVELY)
MASHUP STORE SERVICES AND/OR MASHUPS USEDBY | g17
DB AMASHUP IN DB
INTROSPECT MASHUP TO DISCOVER THE 819
DATA SOURCES BEING USED
863 857 DETERMINE SECURITY DEPENDENCIES OF 821
AMASHUP
MASHUP | [MASHUPA,
SECURITY| |LIST OF SVCS DETERMINE WHETHER MASHUP ASSET 823
DB | |& M-UPS USED CAN BE DISPOSED OF
CHECK WHETHER USER(S) HAVE PERMISSION | | 825
TO USE MASHUP
GRANT/REVOKE USER(S)'S PERMISSION 827
TO USE MASHUP
MASHUP Z,
LIST OF SVCS TRAVERSE RELATIONSHIPS OF USERIMASHUP | | 829
& M-UPS USED MASHUP CLIENT 831
MISC. DATAAND OTHER INSTRUCTIONS 833
J

U.S. Patent Aug. 18, 2015

Fl

901

GET LIST OF MASHUPS OR
SERVICES - A

, 903
INPUT REQUEST TO DISPLAY

GETL
>

Sheet 7 of 7

G.9

951
GET LIST OF MASHUPS OR
SERVICES - B

IST OF DEPENDENCIES

AMASHUP OR SERVICE
AND ITS DEPENDENCIES

RETURN LIST OF DEPEND

INITIALIZE CURRENT ARTIFACT
TO CURRENT MASHUP (OR SERVICE)

GET IDENTITY OF ARTIFACTS (MASHUP,
WIDGET, APPLICATION, SERVICE)
USED BY CURRENT ARTIFACT

Y

957

DONE
MAX NUMBER OF
RECURSIONS

? YES

NO
959

US 9,110,577 B1

953

955

TRAVERSE TO NEXT ARTIFACT USED BY
CURRENT ARTIFACT

|

-

961 #

ENCIES

CREATE LIST OF MASHUP (OR SERVICE)

905
DISPLAY A MASHUP OR SERVICE

AND ITS DEPENDENCIES

907

AND ITS DEPENDENCIES

US 9,110,577 B1

1

METHOD AND SYSTEM FOR CAPTURING,
INFERRING, AND/OR NAVIGATING
DEPENDENCIES BETWEEN MASHUPS AND
THEIR DATA SOURCES AND CONSUMERS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of the following Provi-
sional application: 61/247,155 filed Sep. 30, 2009, which is
expressly incorporated herein by reference.

TECHNICAL FIELD

The technical field relates in general to computer networks,
and more specifically to mashups and capturing, inferring,
and analyzing mashup meta-data for mashup dependencies.

BACKGROUND

Mashups are created by combining data from different
types of data sources including web service, databases, web
sites, applications, and data syndication feeds. Once mashups
are produced, they are made accessible to users via a Rich
Interface Application or a widget.

There are a number of dependencies between mashups,
services, applications, data sources, widgets and users. These
dependencies are important in the mashup platform because it
affects the mashup platform in several ways:

Mashup Trust

Mashup Security

Mashup Integrity

SUMMARY

Accordingly, one or more embodiments provides a com-
puter system, a computer-readable non-transitory medium,
and/or a method. The embodiments can provide for a display
interface; a user input device interface; and a processor coop-
eratively operable with the display interface and the user
input device interface. The processor can interact with a user
to selectively browse, via the user input device interface and
the display interface, relationship dependencies between a
selected mashup or service and mashup assets one level
removed from the selected mashup or service.

One or more embodiments can store the list of services and
mashups used by each mashup in a database, and use the
database to browse from the selected mashup or service to the
mashup assets one level removed.

Still other embodiments can introspect a mashup to discov-
ery data sources directly and indirectly used by the mashup.

Still further embodiments include introspecting the
selected mashup to determine whether the selected mashup is
directly or indirectly used by at least one other mashup, and
disposing of the selected mashup when no other mashup
directly or indirectly uses the selected mashup so as to not
dispose of mashups which are at least indirectly used by other
mashups.

Further embodiments can determine that a user has permis-
sion use to the selected mashup which has dependencies,
when each of the dependencies of the mashup all allow the
user permission to use the each dependency, and determine
that the user does not have permission to use the selected
mashup when one of the dependencies of the mashup does not
allow the user permission even though the selected mashup
allow the user permission.

10

15

20

25

30

35

40

45

50

55

60

65

2

Still other embodiments can include a browser user inter-
face which presents the selected mashup in a focus window,
“used by” relationships of the selected mashup in a “used by”
window, and “uses” relationships of the selected mashup in a
“uses” window. This still other embodiments can support
selectively switch the focus window to a different selected
mashup in one of the “used by” window or the “uses” window,
in response to a user command thereto.

According to yet another embodiment, a mashup system
can include the above computer system (or method) acting as
a mashup client, and a mashup server cooperatively con-
nected to and in communication with the mashup client, to
coordinate access to the relationship dependencies from the
mashup client through the mashup server.

Still other embodiments provide for a method for the fore-
going, and/or a non-transitory computer-readable medium
with instructions thereon which, when executed, perform the
foregoing.

Further, the purpose of the foregoing abstract is to enable
the U.S. Patent and Trademark Office and the public gener-
ally, and especially the scientists, engineers and practitioners
in the art who are not familiar with patent or legal terms or
phraseology, to determine quickly from a cursory inspection
the nature and essence of the technical disclosure of the
application. The abstract is neither intended to define the
invention of the application, which is measured by the claims,
nor is it intended to be limiting as to the scope of the invention
in any way.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying figures, where like reference numerals
refer to identical or functionally similar elements and which
together with the detailed description below are incorporated
in and form part of the specification, serve to further illustrate
various exemplary embodiments and to explain various prin-
ciples.

FIG. 1 is an illustration of mashup dependency relation-
ships: uses and used-by relations.

FIG. 2 is an example user interface illustrating mashup
dependency relationships: uses and use by relations.

FIG. 3 is an illustration of mashup dependency browser,
with mashup 1 in focus.

FIG. 4 is an illustration of a mashup dependency browser,
when the user selects mashup 2.

FIG. 5 is an illustration of a mashup dependency browser,
when the browser puts mashup 2 in focus and shows its
relationships.

FIG. 6 is an illustration of a mashup dependency browser,
when the user selects MASHLET™ component 3.

FIG. 7 is an illustration of a mashup dependency browser,
when the browser puts mashup 2 in focus and shows its
relationships.

FIG. 8 is a block diagram illustrating portions of an exem-
plary computer system.

FIG. 9 is a flow chart illustrating a procedure to get a list of
mashups or services.

DETAILED DESCRIPTION

In overview, the present disclosure concerns computer sys-
tems, sometimes referred to as client/server networks, such as
may be associated with providing mashups. Such computer
systems often involve running a mashup on a user’s computer
that combines data from different data sources and that com-
municates as a client with a mashup server that invokes the
desired web service specified by the mashup, the web service

US 9,110,577 B1

3

providing live data to the user through the mashup client/
server, so that the live data can be used according to the
mashup without regard to user interface formatting specified
by the web service, with the data sources and/or mashups
sometimes being dependent on each other for trustworthi-
ness, security, and/or integrity. More particularly, various
inventive concepts and principles are embodied in systems,
devices, and methods therein for capturing, inferring, and/or
navigating dependencies between mashups and the mashup
data sources and consumers of the mashups.

The computer systems of particular interest are those pro-
viding or facilitating mashups over communication networks
involving a mashup server and a user’s computer, and the like,
and variants or evolutions thereof.

The instant disclosure is provided to further explain in an
enabling fashion the best modes of performing one or more
embodiments of the present invention. The disclosure is fur-
ther offered to enhance an understanding and appreciation for
the inventive principles and advantages thereof, rather than to
limit in any manner the invention. The invention is defined
solely by the appended claims including any amendments
made during the pendency of this application and all equiva-
lents of those claims as issued.

It is further understood that the use of relational terms such
as first and second, and the like, if any, are used solely to
distinguish one from another entity, item, or action without
necessarily requiring or implying any actual such relationship
or order between such entities, items or actions. It is noted that
some embodiments may include a plurality of processes or
steps, which can be performed in any order, unless expressly
and necessarily limited to a particular order; i.e., processes or
steps that are not so limited may be performed in any order.

Much of the inventive functionality and many of'the inven-
tive principles when implemented, are best supported with or
in software or integrated circuits (ICs), such as a digital signal
processor and software therefore, and/or application specific
ICs. It is expected that one of ordinary skill, notwithstanding
possibly significant effort and many design choices motivated
by, for example, available time, current technology, and eco-
nomic considerations, when guided by the concepts and prin-
ciples disclosed herein will be readily capable of generating
such software instructions or ICs with minimal experimenta-
tion. Therefore, in the interest of brevity and minimization of
any risk of obscuring the principles and concepts according to
the present invention, further discussion of such software and
1Cs, if any, will be limited to the essentials with respect to the
principles and concepts used by the exemplary embodiments.

As further discussed herein below, various inventive prin-
ciples and combinations thereof are advantageously
employed to facilitate easier and powerful ways to analyze
mashups and their dependencies by capturing and inferring
dependency relationships between mashups, services, data
source, MASHLET™ components, widgets, applications
and users. (MASHLET™ refers to a type of a mashup, and is
commercially available from JackBe Corporation.)

The Mashup Dependency System (MDS) discussed further
herein can capture information about mashups and relation-
ships between mashups and various artifacts. Using these
relationships, the platform can facilitate the following:

1. Mashup Trust: A mashup is only as trust-worthy as the
services and data it is combining. So as a user, it is important
to know what the pedigree of a Mashup by introspecting the
mashup to understand what data sources are being used.
Without the mashup dependency system, it is not possible to
provide this information to the mashup user.

2. Mashup Security: Mashups are only as secure as the data
sources. If a user needs access to a mashup, but does not have

10

15

20

25

30

35

40

45

50

55

60

65

4

permission to access the underlying data source, then the user
should not be granted access to a mashup. Without the
mashup dependency system, it is not possible to make this
determination.

3. Mashup integrity means once a mashup is put into use,
the system cannot arbitrarily dispose of an asset that the
mashup depends upon. For example, if a mashup is using a
web service that is published in the mashup platform, this
implies that the mashup is dependent on the existence of that
web service. If the owner of that web service needs to decom-
mission that service, they need to know that the service is
currently being used by that mashup and therefore there is a
consequence to removing that service. Without the mashup
dependency system, it is not possible to make this determi-
nation.

Referring now to FIG. 1, an illustration of mashup depen-
dency relationships: uses and used-by relations will be dis-
cussed and described. FI1G. 1 shows the relationships between
the different types of artifacts in the Mashup, particularly, the
artifacts that “use” other artifacts. In this illustration, if a first
artifact “uses” a second artifact, the second artifact is “used
by” the first artifact. A mashup 101 is deemed to “use” the
information from an information-providing service 103, such
as a mashup that uses Google maps information whether the
mashup obtains the information directly from Google maps
or from an intervening mashup that obtained the information
from Google maps.

FIG. 1 illustrates an artifact which is a mashup 101, an
artifact which is a service 103 (labeled as “service/data
source”), and an artifact which is a mashup 105 (labeled as
“mashlet/widget/application”).

The mashup 101 uses itself, and is used by itself, as
reflected in FIG. 1 by arrows labeled “uses” and “used by” to
and from the mashup 101 (only).

The mashup 101 uses the service/data source 103. There-
fore, the service/data source 103 is used by the mashup 101.
Also, the mashlet/widget/application 105 uses the mashup
101. Therefore, the mashup 101 is used by the mashlet/wid-
get/application 105. Each of these relationships are direct;
that is, there is no intervening mashup which passes the data
through.

The mashlet/widget/application 105 uses the service/data
source 103, and therefore service/data source 103 is used by
the mashlet/widget/application 105. This relationship is indi-
rect. That is, the mashup/widget/application may use data
from the service/data source 103; however, the data is
obtained through the intervening mashup 101.

In the mashup trust example given above, the user of the
mashlet/widget/application 105 knows that the data is trust-
worthy (or not), not because it is from mashup 101, but
because the data is originally provided from service/data
source 103 which is trustworthy (or not) and the intervening
mashup 101 is also trustworthy.

In the mashup security example given above, if the user of
the mashup 101 does not have permission to access the ser-
vice/data source 103 mashlet/widget/application 105, then
the same user of mashlet/widget/application 105 should not
be able to access the mashup 101 (or the relevant part thereof)
which provides data from the service/data source 103.

In the mashup integrity example given above, even if the
mashup 101 is no longer operating, the service/data source
103 will still be used by the mashlet/widget/application 105.
Simply determining whether the calling mashup 101 with the
direct relationship still calls the service/data source 103 will
be insufficient to determine whether the service/data source
103 can be decommissioned.

US 9,110,577 B1

5

Mashup Dependencies APIs:

The Mashup Dependency System can provide a rich set of
APIs forthe applications, users and user interfaces to leverage
to ensure that the mashup platform can provide trustworthy,
secure mashups and allow users to ensure mashup data integ-
rity.

There are two types of dependency APIs: (1) relationship
APIs and (2) security APIs.

Examples of these APIs are listed below:

Relationships APIs:

1. Get list of Services used by a Mashup (first level and
recursively). The reference to “first level” means that a single
level (left and right in the illustration) is checked at a time.
The reference to “recursively” means that all of the levels are
checked, such that a network of objects connected by links is
checked. In this example, the relationship API to Get list of
Services used by a Mashup (first level) checks a single level
that uses the Mashup, and a single level that is used by the
Mashup, and gets alist of those services. The “recursive” Get
list performs this recursively on all levels. With this explana-
tion, the following generally should be understood.

2. Get list of Mashups used by a Mashup (first level and
recursively)

3. Get list of Services and Mashups used by a Mashup (first
level and recursively)

4. Get list of Mashups used by a MASHLET™ component
(first level and recursively)

5. Get list of Services used by a MASHLET™ component
(first level and recursively)

6. Get list of Mashups and Services used by a
MASHLET™ component (first level and recursively)

Security Dependencies APIs:

By way of background, a mashup can have securities, such
as permission which can be, e.g., user level or group-based,
etc. A particular example is that a user can be granted various
permissions to perform actions such as access to the mashup,
and/or the user may or may not be granted permission to
receive data used by the mashup. A mashup can allow, for
example, the existing permission schemes to be used. The
existing permission scheme can be provided as a separate
security repository, and/or can be checked. A security policy
can provide for granting permissions, and when those permis-
sions are granted can check for conflicts by using relationship
APIs.

For the purpose of this application, a “service” refers to,
e.g., a web service, or customer proprietary data exposure
service.

1. Check ifa user has permission to use a given Mashup (by
traversing the relationships using a relationship API)

2. Check if a group of users have permission to use a given
Mashup (traverse the relationships)

3. Grant permission to a user or group of users to a Mashup
(traverse relationships to check if a dependent artifact does
not permit this user or group the required permission)

4. Revoke permission to a user or a group of users to a
Mashup

5. Check if a user has permission to use a given
MASHLET™ component (traverse the relationships)

6. Check if a group of users have permission to use a given
MASHLET™ component (traverse the relationships)

7. Grant permission to a user or group of users to a
MASHLET™ component (traverse relationships to check ifa
dependent artifact does not permit this user or group the
required permission)

8. Revoke permission to a user or a group of users to a
MASHLET™ component

10

15

20

25

30

35

40

45

50

55

60

65

6

Referring now to FIG. 2, an example user interface 201
illustrating mashup dependency relationships: uses and used
by relations will be discussed and described. In this illustra-
tion, the user interface 201 provides a “browse” function that
interacts with a user to allow the user to traverse the depen-
dency relationships. Illustrated in the user interface 201 is a
“focus™ 207 of the browser, the “consumed by” relationships
205 (also referred to as “used by”, and the “consumes” 209
relationship (also referred to as “uses”).

The diagram in FIG. 2 shows one way the relationships
data can be leveraged in the mashup platform to display the
inter-dependencies between the artifacts. In this case, the user
is looking at the details of a service and the dependencies of
that service on other artifacts within the mashup platform.

Here, the service Mashup xyz123 is the focus 207 of the
browser. The “consumes” 209 column lists the services which
the focus 207 uses. The “consumed by” 205 column lists the
services which use the focus 207. In this user interface 201,
the browser illustrates the focus 207 and one left and one right
relationship. Other browser can be provided which list two or
more left and/or right relationships for the focus 207.

Mashup Dependency Browser:

The Mashup Dependency System provides a rich set of
APIs forthe applications, users and user interfaces to leverage
to ensure that the mashup platform can provide trustworthy,
secure mashups and allow users to ensure mashup data integ-
rity. The APIs were described above. Using these APIs, the
Presto mashup platform provides for a rich interface to navi-
gate different artifacts and their inter-relationships. This
interface is called Mashup Dependency Browser.

FIG. 3 through FIG. 7 illustrate how the dependency
browser can focus on a set of “uses” and “used by’ relation-
ships with a single artifact at the center. FIG. 3 through FIG.
7 are asimplified illustration of sequentially shifting the focus
of the browser, a single level at a time.

The MDB can be opened by focusing on any artifact in the
mashup platform. For instance, FIG. 3 puts the focus on
Mashup 1. When Mashup 1 is selected as the focal point, the
browser shows all the other artifacts used by Mashup 1 and all
the other artifacts Mashup 1 uses.

Now, when the user selects one of the other artifacts shown
in the browser, the focus shifts to that artifact and the browser
display changes according to the newly discovered relation-
ships. For instance, FIG. 3 and FIG. 4 show the browser with
the focus on Mashup 1 shifting to Mashup 2.

Referring now to FIG. 3, an illustration of mashup depen-
dency browser, with mashup 1 in focus will be discussed and
described. In this user interface 301, there is provided a
“focus” window 305, a “used by” window 303, and a “uses”
window 307. The “used by” window 303 lists the mashlets/
widgets/applications that directly call the focus, i.e., mashup
1317. The “uses” window 307 lists the services/data sources
which the focus 305 uses. Here, ashup 1 317 uses service 1,
service 2, service 3, and mashup 2 309, 311, 313, 315; and
mashup 1 317 is used by mashlet 1, widget 1, application 1
and mashlet 2 319, 321, 323, 325.

The user can interact with the user interface 301, 401 to
select one of the listed artifacts. Referring now to FIG. 4, an
illustration of a mashup dependency browser, when the user
selects mashup 2 will be discussed and described. Here, the
same artifacts are illustrated as in FIG. 3. The “uses” window
407 lists the services/data sources which the focus 405 uses.
Here, mashup 1 417 uses service 1, service 2, service 3, and
mashup 2 409, 411, 413, 415; and mashup 1 417 is used by
mashlet 1, widget 1, application 1 and mashlet 2 419, 421,
423, 425.

US 9,110,577 B1

7

Because the uses selects “mashup 2” such as by clicking in
the user interface, the focus 405 will shift to change mashup
2 415 to become the focus 405.

Referring now to FIG. 5, an illustration of a mashup depen-
dency browser, when the browser puts mashup 2 in focus and
shows its relationships will be discussed and described. Here,
the same artifacts from the “focus” window and the “uses”
window are illustrated as in FIG. 4. However, the “uses”
window 507 lists the services/data sources which the focus
505 (now changed to mashup 2) uses. Here, mashup 2 513
uses service 4 and service 5 509, 511; and mashup 2 513 is
used by mashup 1, mashlet 3, application 2, and widget 2 515,
517, 519, 521. Because mashup 2 513 is now the focus 505,
the “used by” 503 relationship are different. Instead of merely
shifting the “focus” window with the same artifacts to the left,
the browser discovers the “used by” and “uses relationships
of the artifact newly listed in the “focus” window.

Now, when the user selects another artifact shown in the
browser, the focus shifts to that artifact and the browser dis-
play changes according to the newly discovered relation-
ships. For instance, FIG. 6 and FIG. 7 show the same example
browser with the focus shifting from mashup 2 to
MASHLET™ component 3 (which is a “used by” artifact).

Referring now to FIG. 6, an illustration of a mashup depen-
dency browser, when the user selects MASHLET™ compo-
nent 3 will be discussed and described. Here, artifacts are
repeated from FIG. 5. The “uses” window 607 lists the ser-
vices/data sources which the focus 605 uses. Here, mashup 2
613 uses service 4 and service 5 609, 611; and mashup 2 613
is used by mashup 1, mashlet 3, application 2, and widget 2
615, 617, 619, 621.

Because the uses selects “mashlet 3” such as by clicking in
the user interface, the focus 605 will shift to change mashlet
3 619 to become the focus 605, as shown in FIG. 7.

Referring now to FIG. 7, an illustration of a mashup depen-
dency browser, when the browser puts mashlet 3 717 in focus
705 and shows its relationships will be discussed and
described. Here, the same artifacts from the “focus” window
and the “uses” window are illustrated as in FIG. 6, to further
illustrate the shift in the focus window of the user interface
701. However, the “uses” window 707 lists the services/data
sources which the focus 705 (now changed to mashlet 3 717)
uses. Here, mashlet 3 717 uses mashup 2, service 6, mashup
3, and service 7709, 711, 713, 715; and mashlet 3 717 is used
by application 1 719. Because mashlet 3 717 is now the focus
705, the “used by” 703 relationships are different. Instead of
merely shifting the “focus” window with the same artifacts to
the left, the browser discovers the “used by” and “uses rela-
tionships of the artifact newly listed in the focus window 705.

Thus the Mashup Dependency Browser provides a user
friendly way of navigating complex relationships between
different artifacts in the mashup platform by leveraging the
meta-data captured and inferred by the system and the rich
APIs exposed by the mashup dependency system.

In a mashup, for example, Presto software (available from
JackBe Corporation), the mashup application allows a user to
collect data (components) from different sources, and com-
bine them. Content within the mashup describes how the
components which are collected are to be combined.

Referring now to FIG. 8, a block diagram illustrating por-
tions of an exemplary computer system will be discussed and
described. The computer system 801 may include a commu-
nication port and/or transceiver 803 or the like for communi-
cation with a mashup server 807, a processor 805, a memory
809, a display interface 859, a display 851, an input interface
861, and/or a user input device 853 such as a keyboard,
trackball, mouse, joystick, pointing device, and/or similar.

25

40

45

8

The mashup server 807 can be a part of a mashup platform
comprising the mashup server 807 and a mashup client 831
which can execute on the processor 805 of the computer
system 801. Mashup server and mashup client functions can
be distributed between the mashup server 807 and the mashup
client 842 according to known techniques. The mashup server
807 can invoke one or more web services 855 as an informa-
tion-providing services as is known to obtain data from a data
source. Also, the mashup server 807 can access a mashup
security database 863 on which security profiles (such as
permissions) associated with each mashup can be stored; and
can access a database 857 storing a per-mashup list of ser-
vices and mashups used; as well as a conventional mashup
database 861. The mashup security database 863 and/or the
per-mashup list of services database 857 can be incorporated
into the mashup database 861.

The processor 805 may comprise one or more micropro-
cessors and/or one or more digital signal processors. The
memory 809 may be coupled to the processor 805 and may
comprise a read-only memory (ROM), a random-access
memory (RAM), a programmable ROM (PROM), and/or an
electrically erasable read-only memory (EEPROM). The
memory 809 may include multiple memory locations for
storing, among other things, an operating system, data and
variables 811 for programs executed by the processor 805;
computer programs for causing the processor to operate in
connection with various functions such as to provide 813 a
display of a mashup, to get 815 a list of mashups used by a
mashup, to get 817 a list of mashups used by a mashlet
component, to store 817 services/mashups used by a mashup
in a database, to introspect 819 a mashup so as to discover the
data sources being used, to determine 821 security dependen-
cies of a mashup, to determine 823 whether a mashup asset
can be disposed of, to check 825 whether user(s) have per-
mission to use a mashup, to grant/revoke 827 permissions to
users to use a mashup, to traverse 829 relationships of a
user/mashup, a mashup client function 831, and/or other pro-
cessing; and a database 833 for other information used by the
processor 805. The computer programs may be stored, for
example, in ROM or PROM and may direct the processor 805
in controlling the operation ofthe computer system 801. Each
of these functions is considered in more detail below.

The user may invoke functions accessible through the user
input device 853, interface with the processor 805 through an
input interface 849. The user input device 853 may comprise
one or more of various known input devices, such as a key-
board and/or a pointing device, such as a mouse; the keyboard
may be supplemented or replaced with a scanner, card reader,
or other data input device; the pointing device may be a
mouse, touch pad control device, track ball device, or any
other type of pointing device; and the input interface 849 can
be a known interface thereof to communicate with the pro-
cessor 805.

The text and/or image display 851 is representative of a
display that may present information to the user by way of a
conventional liquid crystal display (LCD) or other visual
display, and/or by way of a conventional audible device for
playing out audible messages.

Responsive to signaling from the user input device 853, in
accordance with instructions stored in memory 809, or auto-
matically upon receipt of certain information via the commu-
nication port and/or transceiver 803, the processor 805 may
direct the execution of the stored programs.

The processor 805 can be programmed for providing 813 a
display of a mashup and/or a service, such as is performed
according to known techniques when a user invokes a service
or a mashup. As is known, the invocation of the mashup or

US 9,110,577 B1

9

service is performed via the mashup platform which com-
prises the mashup client 831 and the mashup server 807,
sometimes requiring the system to interact with the user to
input data and select a service or mashup via the user input
device 853 and/or display 851, resulting in the mashup or
service displaying data generated by the web service 855
which is provided for the display 851.

The processor 805 can be programmed to get 815 a list of
mashups and/or services used by a mashup, to a first level or
recursively over two or more levels. Similarly, the processor
805 can be programmed to get 817 a list of mashups and/or
services used by a mashlet component, to a first level or
recursively over two or more levels. The list is provided with
respect to a single node, and includes a list of all nodes which
are connected, directly or indirectly, as “used by” or “uses”
relationships to the single node. Furthermore, the list can
indicate the particular relationship, i.e., the “used by” or
“uses” relationship, and if not the first level, which level and
which nodes connected through.

The processor 805 can be programmed to store 817 a list of
the services/mashups used by a mashup in a database. That is,
a database can be provided that indicates the direct “used by”
relationships for each of the mashups. Here, the database 857
includes a list of services and mashups for Mashup A to
Mashup Z. Note that instead of a separate database, this can
be incorporated into the conventional mashup database 861.

The processor 805 can be programmed to introspect 819 a
mashup so as to discover the data sources being used by a
mashup. That is, in response to a selected mashup, the pro-
cessor 805 can reference the database 857 storing the list of
the services/mashups used by a selected mashup. The data-
base 857 can be recursively traversed the predetermined num-
ber of one or more levels from the selected mashup to the
mashups and services in the list of the selected mashup, to the
lists for each of the listed services and mashups, to discover
the data sources which are directly and indirectly used by the
selected mashup.

The processor 805 can be programmed to determine 821
security dependencies of a mashup. Specifically, in response
to a selected mashup, the processor 805 can reference the
database 857 storing the list of the services/mashups used by
the selected mashup. The processor 805 can reference the
mashup security database 863 for the security profile for the
selected mashup and the mashups and services in the list of
the selected mashup, traversed recursively to the predeter-
mined number of one or more levels away from the selected
mashup. Accordingly, the processor 805 can determine, for
example, whether a necessary permission is granted to a user
or group of users for the mashup and all of its dependencies by
reference to the aggregated security profiles for the mashup
and all of its dependencies.

The processor 805 can be programmed to determine 823
whether a mashup asset can be disposed of. A mashup asset
can be disposed of when no other asset directly or indirectly
has a dependency “uses” relationship to the mashup asset. For
example, the processor can obtain a list of all nodes which are
connected, directly or indirectly, as “uses” relationships to the
single node which is to be disposed of. If the list is empty, that
is, the selected mashup asset has no “uses” relationship, the
selected mashup asset may be disposed of. Known techniques
for disposing of an asset may be used.

The processor 805 can be programmed to check 825
whether user(s) have permission to use a mashup. When a
user attempts to use a selected mashup, the processor 805 can
reference the database 857 storing the list of the services/
mashups used by the selected mashup, and the mashup secu-
rity database 863 for the security profile for the selected

20

30

40

45

10

mashup and the mashups and services in the list of the
selected mashup, traversed recursively to the predetermined
number of one or more levels away from the selected mashup.
Accordingly, the processor 805 can determine, for example,
whether a necessary permission is granted to a user or group
of users for the mashup and all of its dependencies by refer-
ence to the aggregated security profiles for the mashup and all
ofits dependencies.

The processor 805 can be programmed to grant/revoke 827
permissions to users to use a mashup. Various known tech-
niques can be utilized to grant or revoke permissions. Also,
the permissions can be stored in a security profile for the
mashup, such as in the illustrated mashup security database
863.

The processor 805 can be programmed to traverse 829
relationships of a user/mashup. It will be appreciated that the
“uses” and “used by” relationships form trees connected by a
single node in the middle. The trees may or may not be
orderly, since they reflect relationships selected by users. The
tree may be traversed left to right, or right to left, as illus-
trated, or in a similar manner. The traversal can be visualized
with a browser, as discussed herein. Alternatively, the tra-
versal information can be used to determine permissions to
use mashups, suitability for managing mashup dependencies,
or similar.

The processor 305 can be programmed with a mashup
client function 831, in accordance with known techniques.
That is, the mashup platform can be distributed between the
mashup server 807 and the mashup client 829, as is known.
Details which are not presently relevant are omitted from the
present description.

The computer system 801 can include a central processing
unit (CPU) with disk drives (not illustrated), symbolic of a
number of disk drives that might be accommodated by the
computer. Typically, these might be one or more of the fol-
lowing: a floppy disk drive, a hard disk drive, and a CD ROM
ordigital video disk. The number and type of drives may vary,
typically with different computer configurations. Disk drives
may be options, and for space considerations, may be omitted
from the computer system used in conjunction with the pro-
cesses described herein. The computer may also include a CD
ROM reader and CD recorder, which are interconnected by a
bus along with other peripheral devices supported by the bus
structure and protocol (not illustrated). The bus can serves as
the main information highway interconnecting other compo-
nents of the computer, and can be connected via an interface
to the computer. A disk controller (not illustrated) can inter-
face disk drives to the system bus. These may be internal or
external.

It should be understood that FIG. 8 is described in connec-
tion with logical groupings of functions or resources. One or
more of these logical groupings may be omitted from one or
more embodiments, for example, the functionality of analyz-
ing a trend over time in the aggregated data can be omitted
and/or performed on a different processor. Likewise, func-
tions may be grouped differently, combined, or augmented
without parting from the scope. Similarly the present descrip-
tion may describe various databases or collections of data and
information. One or more groupings of the data or informa-
tion may be omitted, distributed, combined, or augmented, or
provided locally and/or remotely without departing from the
scope of the invention.

Referring now to FIG. 9, a flow chart illustrating a proce-
dure to get a list of mashups or services will be discussed and
described. The procedure can advantageously be imple-
mented on, for example, a processor of a computer system,

US 9,110,577 B1

11

optionally together with a mashup server, such as described in
connection with FIG. 8 or other apparatus appropriately
arranged.

In overview, the procedure to track trends conveniently can
be distributed in two flows, the first flow get list of mashups or
services-A 901 as a user application and the second flow get
list of mashups or services-B 951 as a background process.

The first flow 901 can include inputting 903 a request to
display a mashup or service and its dependencies. Standard
techniques may be used to prepare a user interface that inter-
acts with the user to select an artifact such as a mashup which
is to be the focus for the browser. The first flow 901 can then
instruct the flow B 951 to obtain the list of dependencies for
the selected artifact, and can wait to receive the returned list of
dependencies which can then be displayed 905.

The second flow get list of mashups or services B 951 can
include, in response to a request to browse a particular
mashup or service, initializing 953 a current artifact to the
currently selected mashup (or service). The flow B 951 can
get the list for a single level of dependencies, that is just one
“uses” and one “used by” level directly adjacent to the
selected mashup (or service). Alternatively, the flow B 951
can be set to recursively obtain the dependencies to two or
more levels, thereby traversing more of the tree left and right.
The recursion can be preliminarily set, for example, by indi-
cating a maximum number of recursions to one or more (as
desired). To get the list, the flow B 951 gets 955 the identity of
all artifacts (mashups, widgets, applications, and/or services)
which are used by the current artifact. If 957 the maximum
number of recursions has not been reached, the second flow B
can traverse 959 to each of the next artifact (left or right) used
by the current artifact, and for each of the next artifacts repeat
to obtain the identity of the artifacts used thereby.

Accordingly, the second flow B can create 961 a list con-
sisting of the mashup (or service) and its dependencies, that
is, the “uses” and “used by” relationships. The second flow B
can return the list to the first flow A which can display the list
to the user and/or interact with the user for further browsing of
dependencies. Once the second flow B is done creating the list
of'the mashup and its dependencies, the process can end 961.
Similarly, once the first flow A is done displaying 905 the
mashup or service and its dependencies the process can end
907.

For the purpose of this patent application, a “mashup” is
defined as a software application that combines pre-existing
components from one or more information-providing ser-
vices into a single tool which can comprise a server-side and
a client-side application, where the components used by the
mash-up are visually presented to a user on a display at the
client-side in a manner which is different from the pre-deter-
mined presentation of the information-providing service; and
is configured in accordance with standards such as Enterprise
Mashup Markup Language (“EMML”), XML interchanged
as REST or Web Services, RSS, Atom, and other evolutions
and variations of mashup standards. A mashup is to be dis-
tinguished from a portal in which content is presented side-
by-side in the manner which is the same as the pre-determined
presentation of the information-providing service. The des-
ignation “component” as used in this paragraph refers to data
which is retrieved by a mashup in real-time from an informa-
tion-providing service. A mashup is frequently made by
access to open APIs and other data sources to produce results
that were not the original reason for producing the raw source
data. An example of a mashup is the use of cartographic data
from Google Maps to add location information to real estate
data, thereby creating a new and distinct Web service that was
not originally provided by either source.

15

20

30

40

45

55

12

The designation “MASHLET” used herein refers to type of
a mashup that is a client side process that runs in the browser;
a MASHLET sometimes can include a widget. AMASHLET
is available from JackBe Corporation. The phrase
“MASHLET component” refers to a mashup widget which is
included in a MASHLET.

The term “service”, sometimes referred to herein as an
“information-providing service”, is used herein expressly to
refer to an information-providing service that provides data
from a server in a visual presentation on a display to a user,
typically an application programming interface (API) or web
API that can be accessed over a computer network and
executed on a remote system hosting the requested services,
in accordance with Extensible Markup Language messages
that follow the Simple Object Access Protocol (SOAP) stan-
dard such as SOAP Version 1.2 specification, Web Services
Description Language (WSDL) such as Web Services
Description Language Version 2.0 Specification, Representa-
tional State Transfer (REST) constraints, and variations and
evolutions thereof. An example of a service is Google Maps,
a Web service or an RSS feed.

The term “widget” as used herein is defined to be a stand-
alone application which comprises a portable chunk of code
that can be installed and executed within a separate HTML-
based web page by an end user without requiring additional
compilation. A widget frequently is written to use DHTML,
JavaScript, or Adobe Flash, variations and evolutions thereof.
Widgets often take the form of on-screen tools (clocks, event
countdowns, auction-tickers, stock market tickers, flight
arrival information, daily weather, etc.).

It should be understood that the invention is described in
connection with logical groupings of functions or resources.
One or more of these logical groupings may be omitted from
one or more embodiments, and still remain within the scope
of'the present invention. Likewise, functions may be grouped
differently, combined, or augmented without parting from the
scope of the invention. Similarly the present description may
describe various databases or collections of data and infor-
mation. One or more groupings of the data or information
may be omitted, distributed, combined, or augmented, or
provided locally and/or remotely without departing from the
scope of the invention.

A computer-readable storage medium is tangible and can
be any of the memory or disks, such as those examples
described above, or other removable or fixed storage medium.

The foregoing detailed description includes many specific
details. The inclusion of such detail is for the purpose of
illustration only and should not be understood to limit the
invention. In addition, features in one embodiment may be
combined with features in other embodiments of the inven-
tion. Various changes may be made without departing from
the scope of the invention as defined in the following claims.

As one example, the computer system may be a general
purpose computer, or a specially programmed special pur-
pose computer. It may be implemented as a distributed com-
puter system rather than a single computer. Similarly, a com-
munications link may be World Wide Web, a modem over a
POTS line, and/or any other method of communicating
between computers and/or users. Moreover, the processing
could be controlled by a software program on one or more
computer system or processors, or could even be partially or
wholly implemented in hardware.

Further, the invention is not limited to particular protocols
for communication. Any appropriate communication proto-
col may be used.

One or more displays for the system may be developed in
connection with HTML display format. Although HTML is

US 9,110,577 B1

13

the preferred display format, it is possible to utilize alternative
display formats for interacting with a user and obtaining user
instructions.

The above discussion has involved particular examples.
However, the principles apply equally to other examples and/
or realizations. Naturally, the relevant data may differ, as
appropriate.

Further, the above has been discussed in certain examples
as if made available by a provider to a single customer with a
single site. The above described system, device and/or
method may be used by numerous users over distributed
systems, if preferred.

The above has been described in connection with example
data formats, for example XML and/or proprietary or public
formats. However, it may be used in connection with other
data formats, structured and/or unstructured, unitary and/or
distributed.

The system used in connection with various embodiments
may rely on the integration of various components including,
as appropriate and/or if desired, hardware and software serv-
ers, applications software, database engines, server area net-
works, firewall and SSL security, production back-up sys-
tems, and/or applications interface software. The
configuration may be, preferably, network-based and option-
ally utilizes the Internet as an exemplary interface with the
user for information delivery.

The various databases may be in, for example, a relational
database format, but other standard data formats may also be
used. Windows 2007, for example, may be used, but other
standard operating systems may also be used. Optionally, the
various databases include a conversion system capable of
receiving data in various standard formats.

Accordingly, one or more embodiments provide a system,
method, device, and/or computer readable storage medium
which comprises: providing a mashup including a relation-
ship API, wherein the relationship API is as described above.
Also, one or more embodiments provide a system, method,
device, and/or computer readable storage medium which
comprises: providing a mashup including a security APL,
wherein the security API is as described above. Also, one or
more embodiments provides for capturing, inferring, and/or
navigating dependencies between mashups and their data
sources and consumers, wherein the dependencies are
expressed in a relationship API and/or a security API.

It should be noted that the term “computer system” used
herein denotes a device sometimes referred to as a computer,
laptop, personal computer, personal digital assistants, per-
sonal assignment pads, or equivalents thereof provided such
units are arranged and constructed for operation with a
mashup or service.

Furthermore, the communication networks of interest
include those that transmit information in packets, for
example, those known as packet switching networks that
transmit data in the form of packets, where messages can be
packetized and routed over network infrastructure devices to
a destination. Such networks include, by way of example, the
Internet, intranets, local area networks (LAN), wireless
LANs (WLAN), wide area networks (WAN), and others, and
can be supported by networking protocols such as TCP/IP
(Transmission Control Protocol/Internet Protocol) and UDP/
UP (Universal Datagram Protocol/Universal Protocol) and/or
other protocol structures, and variants and evolutions thereof.
Such networks can provide wireless communications capa-
bility and/or utilize wireline connections such as cable and/or
a connector, or similar.

This disclosure is intended to explain how to fashion and
use various embodiments in accordance with the invention
rather than to limit the true, intended, and fair scope and spirit
thereof. The invention is defined solely by the appended
claims, as they may be amended during the pendency of this

10

15

25

30

35

40

45

50

60

65

14

application for patent, and all equivalents thereof. The fore-
going description is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Modifications or
variations are possible in light of the above teachings. The
embodiment(s) was chosen and described to provide the best
illustration of the principles of the invention and its practical
application, and to enable one of ordinary skill in the art to
utilize the invention in various embodiments and with various
modifications as are suited to the particular use contemplated.
All such modifications and variations are within the scope of
the invention as determined by the appended claims, as may
be amended during the pendency of this application for
patent, and all equivalents thereof, when interpreted in accor-
dance with the breadth to which they are fairly, legally, and
equitably entitled.

What is claimed is:

1. A computer system, comprising:

a memory; and

a processor cooperatively operable with the memory, and

configured to, based on instructions stored in memory:
determine, for amashup, at a first level and then recursively
at subsequent levels to a predetermined number, all of
the different services external to the mashup which are
used by the mashup, and all mashups which are external
to the mashup which are used by the mashup, as under-
lying data sources, such that all underlying data sources
of data used by the mashup are determined,
wherein the underlying data sources are those which
directly provide data consumed by the mashup and
those which provide data, via an intervening mashup
or service, which is consumed by the mashup;
determine, for each of the underlying data sources, whether
a user who executes the mashup is permitted to use the
underlying data source, according to a security profile of
the underlying data source, and indicate an authorization
failure when the user is not determined to be permitted to
use at least one of the underlying data sources according
to the security profile of the underlying data source,
wherein the user of the mashup has permission to
execute the mashup;
when the authorization failure is indicated, refuse execu-
tion of the mashup even though the user has permis-
sion to execute the mashup; and
when the authorization failure is not indicated, permit
execution of the mashup;

responsive to a request to dispose of a selected mashup in

a mashup server, introspect the mashup to determine

whether the selected mashup is connected in a “used by”

relationship, directly or indirectly, to at least one other

mashup in the mashup server;

when it is determined that the selected mashup is not
connected in the “used by” relationship, directly or
indirectly, to at least one other mashup in the mashup
server, dispose of the selected mashup from the
mashup server; and

when it is not determined that the selected mashup is
connected in the “used by” relationship, directly or
indirectly, refuse to dispose of the selected mashup
from the mashup server.

2. The computer system of claim 1, further comprising a
browser user interface which presents a selected mashup in a
focus window, “used by” relationships of the selected mashup
in a “used by” window, and “uses” relationships of the
selected mashup in a “uses” window; and

wherein the processor is configured to selectively switch

the focus window to a different selected mashup in one
of the “used by” window or the “uses” window, in
response to a user command thereto.

3. The computer system of claim 2, further comprising
storing a list of services and mashups used by each mashup in

US 9,110,577 B1

15

adatabase, and using the database to browse from the selected
mashup or service to the mashup assets one level removed.

4. The computer system of claim 1, further comprising
introspecting a mashup to discover data sources directly and
indirectly used by the mashup.

5. A mashup system comprising the computer system of
claim 1 acting as a mashup client, and a separate mashup
server cooperatively connected to and in communication with
the mashup client, to coordinate access to “consumed by” and
“consumes” relationship information by the mashup client
through the mashup server.

6. A non-transitory computer-readable medium storing
instructions for executing the method of claim 1.

7. A computer-implemented method, implemented on a
computer system, for navigating mashup dependencies, com-
prising:

determining, at a processor, for amashup, ata firstlevel and

then recursively at subsequent levels to a predetermined
number, all of the different services external to the
mashup which are used by the mashup, and all mashups
which are external to the mashup which are used by the
mashup, as underlying data sources, such that all under-
lying data sources of data used by the mashup are deter-
mined,

wherein the underlying data sources are those which

directly provide data consumed by the mashup and those
which provide data, via an intervening mashup or ser-
vice, which is consumed by the mashup;

determining, by the processor, for each of the underlying

data sources, whether a user who executes the mashup is
permitted to use the underlying data source, according to
a security profile of the underlying data source, and
indicating an authorization failure when the user is not
determined to be permitted to use at least one of the
underlying data sources according to the security profile
of the underlying data source, wherein the user of the
mashup has permission to execute the mashup;
when the authorization failure is indicated, refusing
execution by the processor of the mashup even though
the user has permission to execute the mashup; and
when the authorization failure is not indicated, permit-
ting execution by the processor of the mashup;
responsive to a request to dispose of a selected mashup in
a mashup server, introspecting, by the processor, the
mashup to determine whether the selected mashup is
connected in a “used by” relationship, directly or indi-
rectly, to at least one other mashup in the mashup server;
when it is determined that the selected mashup is not
connected in the “used by” relationship, directly or
indirectly, to at least one other mashup in the mashup
server, disposing, by the processor, of the selected
mashup from the mashup server; and
when it is not determined that the selected mashup is
connected in the “used by” relationship, directly or
indirectly, refusing, by the processor, to dispose of the
selected mashup from the mashup server.

8. The method of claim 7, further comprising providing a
browser user interface which presents a selected mashup in a
focus window, “used by’ relationships of the selected mashup
in a “used by” window, and “uses” relationships of the
selected mashup in a “uses” window; and

selectively switching the focus window to a different

selected mashup in one of the “used by” window or the
“uses” window, in response to a user command thereto.

9. The method of claim 8, further comprising storing a list

of services and mashups used by each mashup in a database,

10

15

20

25

30

40

45

50

55

60

65

16

and using the database to browse from the selected mashup or
service to the mashup assets one level removed.
10. The method of claim 7, further comprising introspect-
ing a mashup to discover data sources directly and indirectly
used by the mashup.
11. A non-transitory computer-readable medium compris-
ing instructions for execution by a computer, the instructions
including a computer-implemented method for navigating
mashup dependencies, the instructions for implementing:
determining, for a mashup, at a first level and then recur-
sively at subsequent levels to a predetermined number,
all of the different services external to the mashup which
are used by the mashup, and all mashups which are
external to the mashup which are used by the mashup, as
underlying data sources, such that all underlying data
sources of data used by the mashup are determined,

wherein the underlying data sources are those which
directly provide data consumed by the mashup and those
which provide data, via an intervening mashup or ser-
vice, which is consumed by the mashup;

determining, for each of the underlying data sources,

whether a user who executes the mashup is permitted to
use the underlying data source, according to a security
profile of the underlying data source, and indicating an
authorization failure when the user is not determined to
be permitted to use at least one of the underlying data
sources according to the security profile of the underly-
ing data source, wherein the user of the mashup has
permission to execute the mashup;
when the authorization failure is indicated, refusing
execution of the mashup even though the user has
permission to execute the mashup; and
when the authorization failure is not indicated, permit-
ting execution of the mashup;

responsive to a request to dispose of a selected mashup in

a mashup server, introspecting the mashup to determine

whether the selected mashup is connected in a “used by”

relationship, directly or indirectly, to at least one other

mashup in the mashup server;

when it is determined that the selected mashup is not
connected in the “used by” relationship, directly or
indirectly, to at least one other mashup in the mashup
server, disposing of the selected mashup from the
mashup server; and

when it is not determined that the selected mashup is
connected in the “used by” relationship, directly or
indirectly, refusing to dispose of the selected mashup
from the mashup server.

12. The computer-readable medium of claim 11, further
comprising providing a browser user interface which presents
a selected mashup in a focus window, “used by” relationships
of the selected mashup in a “used by” window, and “uses”
relationships of the selected mashup in a “uses” window; and

selectively switching the focus window to a different

selected mashup in one of the “used by’ window or the
“uses” window, in response to a user command thereto.

13. The computer-readable medium of claim 12, further
comprising storing a list of services and mashups used by
each mashup in a database, and using the database to browse
from the selected mashup or service to the mashup assets one
level removed.

14. The computer-readable medium of claim 11, further
comprising introspecting a mashup to discover data sources
directly and indirectly used by the mashup.

#* #* #* #* #*

